
Improved conformal mapping of the Borel plane

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 1451

(http://iopscience.iop.org/0305-4470/34/7/316)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 02/06/2010 at 09:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 1451–1457 www.iop.org/Journals/ja PII: S0305-4470(01)15060-2

Improved conformal mapping of the Borel plane

Ulrich D Jentschura and Gerhard Soff

Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

E-mail: jentschura@physik.tu-dresden.de and soff@physik.tu-dresden.de

Received 26 June 2000

Abstract
The conformal mapping of the Borel plane can be utilized for the analytic
continuation of the Borel transform to the entire positive real semi-axis and is
thus helpful in the resummation of divergent perturbation series in quantum
field theory. We observe that the convergence can be accelerated by the
application of Padé approximants to the Borel transform expressed as a function
of the conformal variable, i.e. by a combination of the analytic continuation
via conformal mapping and a subsequent numerical approximation by rational
approximants. The method is primarily useful in those cases where the leading
(but not sub-leading) large-order asymptotics of the perturbative coefficients
are known.

PACS numbers: 1115B, 1110J

The problem of the resummation of quantum field theoretic series is of obvious importance
in view of the divergent, asymptotic character of the perturbative expansions [1–3]. The
convergence can be accelerated when additional information is available about large-order
asymptotics of the perturbative coefficients [4]. In the example cases discussed in [4], the
location of several poles in the Borel plane, known from the leading and next-to-leading large-
order asymptotics of the perturbative coefficients, is utilized in order to construct specialized
resummation prescriptions. Here, we consider a particular perturbation series, investigated
in [5], where only the leading large-order asymptotics of the perturbative coefficients are
known to sufficient accuracy, and the subleading asymptotics have—not yet—been determined.
Therefore, the location of only a single pole—the one closest to the origin—in the Borel plane
is available. In this case, as discussed in [6,7], the (asymptotically optimal) conformal mapping
of the Borel plane is an attractive method for the analytic continuation of the Borel transform
beyond its circle of convergence and, to a certain extent, for accelerating the convergence of the
Borel transforms. Here, we argue that the convergence of the transformation can be accelerated
further when the Borel transforms, expressed as a function of the conformal variable which
mediates the analytic continuation, are additionally convergence-accelerated by the application
of Padé approximants.

First we discuss, in general terms, the construction of the improved conformal mapping
of the Borel plane which is used for the resummation of the perturbation series defined in
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equations (14) and (18) below. The method uses as input data the numerical values of
a finite number of perturbative coefficients and the leading large-order asymptotics of the
perturbative coefficients, which can, under appropriate circumstances, be derived from an
empirical investigation of a finite number of coefficients, as has been done in [5]. We start
from an asymptotic, divergent perturbative expansion of a physical observable f (g) in powers
of a coupling parameter g,

f (g) ∼
∞∑

n=0

cn gn (1)

and we consider the generalized Borel transform of the (1, λ)-type (see equation (4) in [4]),

f
(λ)
B (u) ≡ f

(1,λ)
B (u) =

∞∑
n=0

cn


(n + λ)
un. (2)

The full physical solution can be reconstructed from the divergent series (1) by evaluating the
Laplace–Borel integral, which is defined as

f (g) = 1

gλ

∫ ∞

0
du uλ−1 exp

(−u/g
)
f

(λ)
B (u). (3)

The integration variable u is referred to as the Borel variable. The integration is carried out
either along the real axis or infinitesimally above or below it (if Padé approximants are used
for the analytic continuation, modified integration contours have been proposed [8]). The
most prominent issue in the theory of the Borel resummation is the construction of an analytic
continuation for the Borel transform (2) from a finite-order partial sum of the perturbation
series (1), which we denote by

f
(λ),m
B (u) =

m∑
n=0

cn


(n + λ)
un. (4)

The analytic continuation can be accomplished using the direct application of Padé
approximants to the partial sums of the Borel transform f

(λ),m
B (u) [5,8–10] or by a conformal

mapping [6, 7, 11–13]. We now assume that the leading large-order asymptotics of the
perturbative coefficients cn defined in equation (1) is factorial, and that the coefficients display
an alternating sign pattern. This indicates the existence of a singularity (branch point) along
the negative real axis corresponding to the leading large-order growth of the perturbative
coefficients, which we assume to be at u = −1. For Borel transforms which have only a single
cut in the complex plane which extends from u = −1 to u = −∞, the following conformal
mapping has been recommended as optimal [6]:

z = z(u) =
√

1 + u − 1√
1 + u + 1

. (5)

Here, z is referred to as the conformal variable. The cut Borel plane is mapped onto the
unit circle by the conformal mapping (5). We briefly mention that a large variety of similar
conformal mappings have been discussed in the literature [14–19].

It is worth noting that conformal mappings which are adopted for doubly-cut Borel planes
have been discussed in [6, 7]. We do not claim here that it would be impossible to construct
conformal mappings which reflect the position of more than two renormalon poles or branch
points in the complex plane. However, we stress that such a conformal mapping is likely to have
a more complicated mathematical structure than, for example, the mapping defined in equation
(27) in [6]. Using the alternative methods described in [4], poles (branch points) in the Borel
plane corresponding to the subleading asymptotics can be incorporated easily provided their



Improved conformal mapping of the Borel plane 1453

position in the Borel plane is known. In a concrete example (see table 1 in [4]), 14 poles in the
Borel plane have been fixed in the denominator of the Padé approximant constructed according
to equations (53)–(55) in [4], and accelerated convergence of the transforms is observed. In
contrast to the investigation [4], we assume here that only the leading large-order factorial
asymptotics of the perturbative coefficients are known.

We continue with the discussion of the conformal mapping (5). It should be noted that for
series whose leading singularity in the Borel plane is at u = −u0 with u0 > 0, an appropriate
rescaling of the Borel variable u → |u0| u is necessary on the right-hand side of equation (3).
Then, f

(λ)
B (|u0| u) as a function of u has its leading singularity at u = −1 (see also equation

(41.57) in [2]). The Borel integration variable u can be expressed as a function of z as follows:

u(z) = 4z

(z − 1)2
. (6)

The mth partial sum of the Borel transform (4) can be rewritten, upon expansion of the u in
powers of z, as

f
(λ),m
B (u) = f

(λ),m
B

(
u(z)

) =
m∑

n=0

Cn zn + O(zm+1) (7)

where the coefficients Cn as a function of the cn are uniquely determined (see, e.g., equations
(36) and (37) of [6]). We define the partial sum of the Borel transform, expressed as a function
of the conformal variable z, as

f
′(λ),m
B (z) =

m∑
n=0

Cn zn. (8)

In a previous investigation [6], Caprini and Fischer evaluate the following transforms:

T ′
mf (g) = 1

gλ

∫ ∞

0
du uλ−1 exp

(−u/g
)
f

′(λ),m
B (z(u)). (9)

Caprini and Fischer [6] observe the apparent numerical convergence with increasing m. The
limit as m → ∞, provided it exists, is then assumed to represent the complete, physically
relevant solution,

f (g) = lim
m→∞ T ′

mf (g) . (10)

We do not consider the question of the existence of this limit here (for an outline of questions
related to these issues we refer to [7]).

In the absence of further information on the analyticity domain of the Borel transform (2),
we cannot necessarily conclude that f

(λ)
B (u(z)) as a function of z is analytic inside the unit

circle of the complex z-plane, or that, for example, the conditions of Theorem 5.2.1 of [20]
are fulfilled. Therefore, we propose a modification of the transforms (9). In particular,
we advocate the evaluation of (lower-diagonal) Padé approximants [20, 21] to the function
f

′(λ),m
B (z), expressed as a function of z,

f
′′(λ),m
B (z) =

[
[[m/2]]

[[(m + 1)/2]]

]
f

′(λ),m
B

(z) . (11)

We define the transforms,

T ′′
mf (g) = 1

gλ

∫
Cj

du uλ−1 exp
(−u/g

)
f

′′(λ),m
B

(
z(u)

)
(12)

where the integration contours Cj (j = −1, 0, 1) have been defined in [8]. These integration
contours have been shown to provide the physically correct analytic continuation of resummed
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Table 1. Resummation of the perturbation series (14) for the anomalous dimension γ function
of the six-dimensional φ3 theory by the method defined in equations (1)–(12). The transforms
T ′′

mγhopf (g) are shown in the transformation order m = 28, 29, 30. The coupling g assumes the
values g = 5.0, 5.5, 6.0 and g = 10.0.

m T ′′
mγhopf (5.0) T ′′

mγhopf (5.5) T ′′
mγhopf (6.0) T ′′

mγhopf (10.0)

28 −0.501 565 232 −0.538 352 234 −0.573 969 740 −0.827 506 173
29 −0.501 565 232 −0.538 352 233 −0.573 969 738 −0.827 506 143
30 −0.501 565 231 −0.538 352 233 −0.573 969 738 −0.827 506 136

Table 2. Resummation of the perturbation series (18) for the anomalous dimension of the Yukawa
coupling via the method defined in equations (1)–(12). The transforms T ′′

m γ̃hopf (g) are shown
in the order of transformation m = 28, 29, 30. For the coupling g, we consider the values
g = 5.0, 5.5, 6.0 and g = 302/(4π)2 = 5.69932 . . ..

m T ′′
m γ̃hopf (5.0) T ′′

m γ̃hopf (5.5) T ′′
m γ̃hopf (6.0) T ′′

m γ̃hopf (302/(4π)2)

28 −1.669 071 213 −1.800 550 588 −1.928 740 624 −1.852 027 809
29 −1.669 071 214 −1.800 550 589 −1.928 740 626 −1.852 027 810
30 −1.669 071 214 −1.800 550 589 −1.928 740 625 −1.852 027 810

perturbation series for those cases where the evaluation of the standard Laplace–Borel
integral (3) is impossible due to an insufficient analyticity domain of the integrand (possibly
due to multiple branch cuts) or due to spurious singularities in view of the finite order of the
Padé approximations defined in (11). We should mention potential complications due to multi-
instanton contributions, as discussed for example in ch 43 of [2] (these are not encountered in
the current investigation). In this paper, we use exclusively the contour C0 which is defined as
the half sum of the contours C−1 and C+1 displayed in figure 1 in [8]. At increasing m, the limit
as m → ∞, provided it exists, is then again assumed to represent the complete, physically
relevant solution,

f (g) = lim
m→∞ T ′′

mf (g). (13)

Because we take advantage of the special integration contours Cj , analyticity of the Borel
transform f

(λ)
B (u(z)) inside the unit circle of the complex z-plane is not required, and additional

acceleration of the convergence is mediated by employing Padé approximants in the conformal
variable z.

We consider the resummation of two particular perturbation series discussed in [5] for the
anomalous dimension γ function of the φ3 theory in six dimensions and the Yukawa coupling
in four dimensions. The perturbation series for the φ3 theory is given in equation (16) in [5],

γhopf(g) ∼
∞∑

n=1

(−1)n
Gn

62n−1
gn (14)

where the coefficients Gn are given in table 1 in [5] for n = 1, . . . , 30 (the Gn are real and
positive). We denote the coupling parameter a used in [5] as g; this is done in order to ensure
compatibility with the general power series given in equation (1). Empirically, Broadhurst and
Kreimer [5] derive the large-order asymptotics

Gn ∼ constant × 12n−1 
(n + 2) n → ∞ (15)

by investigating the explicit numerical values of the coefficients G1, . . . , G30. The leading
asymptotics of the perturbative coefficients cn are therefore (up to a constant prefactor)

cn ∼ (−1)n

(n + 2)

3n
n → ∞. (16)
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This implies that the λ-parameter in the Borel transform (2) should be set to λ = 2 (see also the
notion of an asymptotically optimized Borel transform discussed in [4]). In view of equation
(16), the pole closest to the origin of the Borel transform (2) is expected at

u = u
hopf
0 = −3 (17)

and a rescaling of the Borel variable u → 3u in equation (3) then leads to an expression
to which the method defined in equations (1)–(12) can be applied directly. For the Yukawa
coupling, the γ -function reads

γ̃hopf(g) ∼
∞∑

n=1

(−1)n
G̃n

22n−1
gn (18)

where the G̃n are given in table 2 in [5] for n = 1, . . . , 30. Empirically, i.e. from an
investigation of the numerical values of G̃1, . . . , G̃30, the following factorial growth in large
order is derived [5]:

G̃n ∼ constant′ × 2n−1 
(n + 1/2) n → ∞. (19)

This leads to the following asymptotics for the perturbative coefficients (up to a constant
prefactor),

cn ∼ (−1)n

(n + 1/2)

2n
n → ∞. (20)

This implies that an asymptotically optimal choice [4] for the λ-parameter in (2) is λ = 1/2.
The first pole of the Borel transform (2) is therefore expected at

u = ũ
hopf
0 = −2. (21)

A rescaling of the Borel variable according to u → 2u in (3) enables the application of the
resummation method defined in equations (1)–(12).

In table 1, numerical values for the transforms T ′′
mγhopf(g) are given, which have been

evaluated according to equation (12). The transformation order is in the range m = 28, 29, 30,
and we consider coupling parameters g = 5.0, 5.5, 6.0 and g = 10.0. The numerical
values of the transforms display apparent convergence to about nine significant figures for
g � 6.0 and to about seven figures for g = 10.0. In table 2, numerical values for
the transforms T ′′

m γ̃hopf(g) calculated according to equation (12) are shown in the range
m = 28, 29, 30 for (large) coupling strengths g = 5.0, 5.5, 6.0. Additionally, the value
g = 302/(4π)2 = 5.69932 . . . is considered as a special case (as was done in [5]). Again,
the numerical values of the transforms display apparent convergence to about nine significant
figures. At large coupling g = 12.0, the apparent convergence of the transforms suggests the
following values: γhopf(12.0) = −0.939 114 3(2) and γ̃hopf(12.0) = −3.287 176 9(2). The
numerical results for the Yukawa case, i.e. for the function γ̃hopf , have recently been confirmed
by an improved analytic, nonperturbative investigation [22] which extends the perturbative
calculation [5].

We note that the transforms T ′
mγhopf(g) and T ′

mγ̃hopf(g) calculated according to equation
(9), i.e. by the unmodified conformal mapping, typically exhibit apparent convergence to five
or six significant figures in the transformation order m = 28, 29, 30 and at large coupling
g � 5. Specifically, the numerical values for g = 5.0 are:

T ′
28γhopf(g = 5.0) = −0.501 567 294

T ′
29γhopf(g = 5.0) = −0.501 564 509

T ′
30γhopf(g = 5.0) = −0.501 563 626.
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These results, when compared to the data in table 1, exemplify the acceleration of the
convergence by the additional Padé approximation of the Borel transform expressed as a
function of the conformal variable (see equation (11)).

It is not claimed here that the resummation method defined in equations (1)–(12)
necessarily provides the fastest possible rate of convergence for the perturbation series defined
in equations (14) and (18). Further improvements should be feasible, especially if particular
properties of the input series are known and exploited (see in part the methods described in [4]).
We also note possible improvements based on a large-coupling expansion [23], in particular
for excessively large values of the coupling parameter g, or methods based on order-dependent
mappings (see [11, 12] or the discussion following equation (41.67) in [2]).

The conformal mapping [6,7] is capable of accomplishing the analytic continuation of the
Borel transform (2) beyond the circle of convergence. Padé approximants, applied directly to
the partial sums of the Borel transform (4), provide an alternative to this method [4, 5, 8–10].
Improved rates of convergence can be achieved when the convergence of the transforms
obtained by conformal mapping in equation (7) is accelerated by evaluating Padé approximants
as in equation (11), and conditions on analyticity domains can be relaxed in a favourable way
when these methods are combined with the integration contours from [8]. Numerical results
for the resummed values of the perturbation series (14) and (18) are provided in tables 1 and 2.
By the improved conformal mapping and other optimized resummation techniques (see, e.g.,
the methods introduced in [4]) the applicability of perturbative (small-coupling) expansions
can be generalized to the regime of large coupling and still lead to results of relatively high
accuracy.
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